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RAM, bandwidth etc., should be properly 
scheduled for better service provision.

Resource allocation algorithm is widely 
studied in recent works on shared communi-
cation and computing systems. max-min fair-
ness[4][6][15] ensures the allocations of the 
users with minimal resource demands. In pro-
portional fairness[10][14], it attempts to find a 
balance point in resource allocation among the 
competing interests. α-fairness[19] attempts 
to determine an equilibrium point between al-
location fairness and the utilization efficiency 
of resources. Ref.[17] presents a game theory 
based approach which introduces a tradeoff 
between relay fairness and system throughput. 
In multi-type resource allocation, ref.[1][3]
[18] and ref.[5][11][13] focus on multiple in-
stances of the same resource. Ref.[7] proposes 
Dominant Resource Fairness (DRF) which 
is designed to ensure the fairness in the allo-
cation of multiple types of resources, such as 
CPU, RAM and bandwidth etc. [2][8] propose 
genetic algorithm based approaches to obtain 
the optimal allocation.

Although abundant allocation algorithms 
are proposed for resource allocation in cloud 
computing, how to evaluate the fairness of an 
allocation approach is less studied. Ref.[12] 
proposes an fairness evaluation model for sin-
gle-type resource allocation algorithm. Based 
on [7] and [12], [9] presents a DRF based 
unified framework, named Fairness on Domi-

Abstract: In cloud computing, fairness is one 
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I. INTRODUCTION

In cloud computing, computational resources 
are highly integrated in the “cloud”. Services 
and applications are provided by virtual 
machines running over the cloud platform. 
Hence, computational resources, such as CPU, 
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environment. Finally, with the combination 
of DDM and DNM, we establish our fairness 
evaluation framework, DEFF.

2.1 FDS framework

Ref.[7] gives the definition of the maximum 
share of a resource required by user j to pro-
cess one computational task as following:

 µ j = max
i

{
di j

Ri

}
.

dij denotes the demand on resource i, and Ri 
indicates the resource capacity. Assume the 
number of jobs allocated to j is xj, thus, the 
Dominant Share (DS) of node j can be denot-
ed as μjxj , and the corresponding resource is 
dominant resource. Here, a job can be consid-
ered as one of a node’s execution threads to 
finish the computing task. Based on DS and 
max-min fairness, [7] presents dominant share 
fairness (DRF) allocation algorithm, which 
determines the node’s share of each resource 
according to its dominant share. Assume the 
dominant share of node k is maximized, then, 
its job number reaches to the maximum. Thus, 
other resource demands of k, which are less 
than dominant resource, are also satisfied and 
maximized. According to DRF, all nodes’ de-
mands can be maximized without damaging 
others’ interests, hence, allocation based on 
DS can obtain higher fairness than max-min 
fairness[7].

Upon [7][12], [9] proposes FDS, which is 
a dominant share based fairness evaluation 
framework. FDS is defined as following

Fβ,λ = sgn(1 − β)



n∑

j=1


µ j x j

n∑
k=1

µk xk



1−β

1
β 

n∑

j=1

µ j x j



λ

 (1)
Equation (1) gives a function, Fβ,λ , for 

evaluating fairness of allocation algorithm as 
per node’s dominant share. Fβ,λ  can be divided 
into two parts: 1) fairness and 2) efficiency. 
Compared with the fairness function devel-
oped in [12], the resource utilization (efficien-
cy) is taken into consideration in Fβ,λ , which 
indicates the adequacy of resource utilization. 

nant Shares (FDS), for fairness evaluation, in 
which the efficiency of resource utilization is 
also considered. In FDS, two key factors are 
introduced, β and λ. β indicates the fairness 
type and λ emphasizes the resource utilization 
(efficiency).

However, in cloud computing, the resource 
demands of the computing nodes (virtual ma-
chines) can vary at different task phases. We 
define a task phase as a period in which a node 
is executing one computing task. For exam-
ple, when the platform is solving equations in 
different sizes concurrently with computing 
nodes, the node number can be different ac-
cording to the size and complexity of the equa-
tions. Moreover, the nodes which finish tasks 
will be terminated, and occupied resources 
can be released, whereas new nodes will be 
created for new tasks, and new resource allo-
cations begins. Hence, the resource demand 
and the node number can change in different 
period under cloud environment. Both of these 
dynamic features in cloud are not adequately 
considered in existing research works.

To address the two issues, we propose a 
Dynamic Evaluation Framework for Fairness 
(DEFF) in resource allocation. Our model 
contains two sub-models, Dynamic Demand 
Model (DDM) and Dynamic Node Model 
(DNM). The previous depicts resource de-
mand of the nodes in each task phase, whereas 
the later gives a description to the variation of 
node number. With combination of DDM and 
DNM, we obtain our evaluation model DEFF, 
which can better adapt the cloud environment.

The rest of the paper is organized as fol-
lows. In section II, DDM and DNM are pro-
posed, then DEFF is deduced. In section III 
the simulations on the DDM, DNM and DEFF 
are proposed and analyzed. Finally, we state 
concluding remarks in section IV.

II. SYSTEM MODEL

In this section, we firstly give a brief introduc-
tion to the FDS evaluation framework. Then, 
DDM and DNM are proposed for dynamic 
resource demand and computing node in cloud 

This paper proposes 
Dynamic Evaluation 
Framework for Fair-
ness (DEFF), a frame-
w o r k  f o r  d y n a m i c 
evaluation of fairness 
based on dominant 
share.
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with time, the actual allocation vector can be 
denoted as

      aj(t)=Dj(t) ∙ vj(t) (4)
With equation (4), the amount of actual 

allocation on resource i can be denoted as 
aij(t)=dij(t)∙vj(t). If the capacity of i is Ri, the to-
tal allocation of i at time point tp should satisfy 
the following relation

n∑

j

ai j(tp) =
n∑

j

di j(tp)vj(tp) � Ri  (5)

Thus, equation (4) gives time based alloca-
tion model under dynamic resource demand, 
which is subjected to equation (5).

2.3 Dynamic node model

When some computing tasks are finished, the 
relevant nodes will be terminated and the used 
resources will be released, whereas new node 
can be created with resource allocation as new 
tasks are designated. In this case, the total sys-
tem resource available varies according to the 
termination and creation of the nodes.

Consider arbitrary time tp and resource 
i, we define the set of terminated and creat-
ed  nodes  as  Φ(tp) =

{
nodej|v̂ j(tp) = 0

}
 and 

Ω(tp) =
{
node′k|v′k(tp) � 0 ∧ v′k(tp) � v j(tp)

}
 

respectively. Consider the node number can 
change with time, let n(tp) denotes the total 
number of nodes at any time point tp. Thus we 
have
∑

k

d′ ik(tp)v′k(tp) +
n(tp )∑

j

di j(tp)vj(tp) � Ri  (6)

Taking into account the creation and 
terminat ion of  the  nodes ,  the  amount 
available of resource i can be denoted as 
Ui(tp) = Ui(tp′ ) −CΩ

i (tp) +CΦ

i (tp) , in which t′p  
denotes the previous time point, CΩ

i (tp)  de-
notes the total allocation on i for new created 
nodes, whereas CΦ

i (tp)  denotes the amount 
of released resource i. We define the amount 
of occupied resources at time tp as Oi(tp)

,  then  Oi(tp) = Oi(t′p) +CΩ

i (tp) −CΦ

i (tp) ,  and 
Ri = Ui(tp) + Oi(tp) . Since Ri is a constant, 
with Ui(t) increases, Oi(t) inevitably decreases, 
and vice versa. Particularly, as Ui(t)=0, re-
source i is saturated at tp.

This is of importance in the assessment of a 
fair allocation algorithm. In Fβ,λ , β ∈ R  is 
used to designate the fairness type, whereas 
λ ∈ R  emphasizes efficiency of resource uti-
lization. By adjusting β and λ, we can obtain 
various evaluation functions with different 

fairness type. E.g. as β→∞ and λ =
1 − β
β

, 

Fβ,λ  then approaches “max-min fairness” on 

the dominant shares. Moreover, if we take 

β>0 and λ =
1 − β
β

, we recover “α-fairness”. 

In particular, taking the limit as β→1 yields 
“proportional fairness”[9]. Without loss of 
generality, assume the node has only one job 
(xj=1), equation (1) can be reduced to

Fβ,λ = sgn(1 − β)



n∑

j=1


µ j

n∑
k=1

µk



1−β

1
β 

n∑

j=1

µ j



λ

 (2)

Thus, equation (2) provides a universal 
framework for fairness evaluation. As men-
tioned before, the nodes’ resource demands 
and their number can vary according to differ-
ent tasks phases that are not considered in the 
evaluation framework (equation 2). To address 
this issue, in the following sections, we firstly 
propose DDM and DNM model, then we es-
tablish our evaluation framework DEFF.

2.2 Dynamic demand model

Assume platform P  with m kinds of resource, 
node j requires dij on resource i, thus, we ob-
tain dominant share of j as the definition of 
μj. Obviously, μj is determined by the maxi-
mal demand of j. However, in different task 
phases, the dominant share of the nodes can be 
changed. Hence, μj should be the function of 
time (task phase), which can be redefined as

    µ j(t) = max
i

{
di j(t)

Ri

}
 (3)

Assume resource demand of j can be de-
noted as a vector Dj=(d1j, d2j, ..., dmj), and 
the actual allocation (aij) may not fulfill the 
node’s requirements, thus, we have aij≤dij. By 
introducing a coefficient vj,(0<vj≤1), we have 
aj=vjDj. Since these parameters can change 
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equation (2) can be transformed into

Fβ,λ(t) = sgn(1 − β)



n(t)∑

j=1



µ j(t)vj(t)
n(t)∑
k=1

µk(t)vk(t)



1−β

1
β 

n(t)∑

j=1

µ j(t)vj(t)



λ

 (11)

Further, if 
n(t)∑

k=1

µk(t)vk(t)  denotes the sum of 

system dominant share, with the consideration 
of node number variation and equation (10), 
we can obtain the following definition.

Fβ,λ(t) = sgn(1 − β)

η(t)∑

j=1

(
µ j(t)vj(t)

M(t)

)1−β

1
β

(M(t))λ

 (12)
Equation (12) is our fairness evaluation 

framework (DEFF), in which η(t) denotes the 
node number at t, and we have
η(t) = n(t) + ||Ω(t)|| − ||Φ(t)|| .  It can be ob-
tained from DEFF model that the node num-
ber and the total dominant share can vary with 
time. Hence, equation (12) can reflect the in-
fluences to allocation fairness (Fβ,λ(t)), which 
are brought by such variations.

Theorem 1: DEFF does not change the 
properties of prototype evaluation model.

Proof. For any time point tp, the sys-
tem node number can be considered as an 
instantaneous constant nt

p
. Thus, the total 

dominant share become a constant denoted 

as M(tp) =
n

tp∑

j

µ j(tp)vj(tp) .  Since μ j(tp) and 

vj(tp) are determined at this moment, we have 

M(tp) =
n

tp∑

j

µ jv j , hence,

Fβ,λ(tp) = sgn(1 − β)



n
tp∑

j=1



µ jv j

n
tp∑
j

µ jv j



1−β

1
β 

n
tp∑

j=1

µ jv j



λ

, 

that is, equation (12) is regressed to the form 
of equation (2) as vj=1. In summary, equation 
(12) can be transformed into the prototype 
evaluation framework at a determined mo-
ment. On the other hand, equation (2) can be 
considered as the special case of the model 
(12) at a determined moment.

Assume the probability of new node cre-
ation at a certain time point is pω, whereas that 
of the node termination is pφ, define function 
g1(t) and g2(t) as

g1(t) =
{

1, in pω
0, in 1 − pω

, g2(t) =
{

1, in pφ
0, in 1 − pφ

.

 (7)
The occupancy of resource i at tp can be re-

written as

   

Oi(tp) = Oi(t′ p) + g1(tp) ·
||Ω(t

p
)||∑

k

d′ ik(tp)v′k(tp)

−g2(tp) ·
||Φ(t

p
)||∑

k

d̂ik(tp)v̂k(tp)

 (8)

In equation (8), Oi(t′p)  is the resource 
available at previous time point, we have 

Oi(t′p) =
n(t′

p
)∑

j

di j(t′p)vj(t′p)  according to equation 

(4). Thus, equation (8) can be transformed into

Oi(tp) =
n(t′

p
)∑

j

di j(t′ p)vj(t′ p) + g1(tp) ·
||Ω(t

p
)||∑

k

v′k(tp)d′ ik(tp)

−g2(tp) ·
||Φ(t

p
)||∑

k

v̂k(tp)d̂ik(tp)

 (9)
Equation (9) gives dynamic model of 

“time—probability” for occupancy of resource 
i, which can reflect the actual features of occu-
pied system resources in the case of dynamic 
node quantity. Similarly, since the dominant 
share is the maximal element in the demand 
vector, the total amount of system dominant 
shares has the similar form defined as

M(tp) =
n(t′

p
)∑

j

µ j(t′ p)vj(t′ p) + g1(tp)
||Ω(t

p
)||∑

k

µ′k(tp)v′k(tp)

−g2(tp))
||Φ(t

p
)||∑

k

µ̂′k(tp)v̂′k(tp)

 (10)
Referring to the definition of µ j(tp) , we have 

M(tp) <
m∑

i

Oi(tp) . Consider equation (2) and 

(10), we can further deduce our evaluation 
model DEFF.

2.4 DEFF model

By the definition of μj(t), the actual amount 
of dominant share of node j is μj(t)∙vj(t). Thus, 
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out the intersection v*(tp).
To illustrate this point, we take an ex-

ample of allocation issue with 2 nodes and 
3 types of resources. Assume the demand 

vectors of the two node are d1 = ( 1
4
, 2

3
, 1) 

and d2 = ( 1
2
, 1

3
, 0), if the allocation result is 

v=(v1,v2), then the following equations hold.

 



1
4 v1 +

1
2 v2 � 1 : L1

2
3 v1 +

1
3 v2 � 1 : L2

v1 � 1 : L3

 (14)

(14) defines three linear equations, L1, L2 and 
L3, which form a closed area shown as figure 
1. The gray area is the solution space Q(t) 
formed by three lines according to the re-
source constraints. With certain fair allocation 
algorithm, we obtain a point 

(
v∗1, v

∗
2

)
 in Q(t) 

area, which is the solution to the fair alloca-
tion problem. Different allocation algorithms 
can generate different solutions, however, the 
set of solutions is definitely in Q(t). Since re-
source demand vector changes over time, L1, 
L2, L3 and the rectilinear region can change 
at different time, nevertheless, the allocation 
solution is still in Q(t). Thus, definite algo-
rithm and demand vector (at a definite time) 
can uniquely determine Q(t) and the solution.

Consider a scenario with n nodes and m 
resources, the lines in the example above 
become n-dimension hyperplanes, and the 
demand vectors become the normal vectors 
perpendicular to these hyperplanes. The solu-
tion space, marked as S(t) , is constructed 
by m n-dimension hyperplanes, in which the 
solution is located. Note that S(t)  is also the 
function of time.

3.2 Analysis of DNM

From equation (9), the occupied resource i at 
a certain time, Oi(t), consists of three parts: 
1) the previous occupancy, Oi(t'), 2) the new 
allocation at this time, CΩ

i (t) , and 3) the 
amount of released resource CΦ

i (t) . Since the 
released resource must be from the occupancy 
at the previous time, we have the constraint 
Oi(t′) � CΦ

i (t) . Once the equality holds, it 

III. ANALYSIS AND EVALUATION

In this section, we discuss the DDM and DNM 
model, and give the simulations and analysis 
on DEFF.

3.1 Analysis of DDM

For arbitrary resource i, according to equation 
(4), the total allocation can be denoted as

si(t) =
n(t)∑

j

di j(t)vj(t), (si � Ri),

which can be defined as

 Lt :
n(t)∑

j

di j(t)vj(t) − si(t) = 0  (13)

Lt  determines a hyperplane whose normal 
vector di(t)=(di1(t),di2(t), ..., din(t)(t)) is perpen-
dicular to the allocation vector v(t) and Lt . 
The intersection of di(t) and Lt  is the solution 
to resource allocation at t, which is marked as 
v*. Furthermore, an allocation algorithm with 
fairness (e.g. max-min fairness) is actually to 
build a hyperplane Lt  to satisfy certain fair-
ness requirements, and finally find out the op-
timized v* as per the principles of algorithm. 
For different time t, t ∈ [0,∞) , there exists a 
set of demand vector on resource i, denoted by 
Di=(di(t1),di(t2), ..., di(tn)). Each element of Di 
is a demand vector for resource i and satisfy 

the constraint 
∑

di(tp) � Ri . The essence of 

the resource allocation is to find a hyperplane 
perpendicular to the normal vector di(tp) at 
time tp according to the fairness principles pro-
vided by allocation algorithm, and finally find 

Fig.1  Solution space under d1 and d2
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v1
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Q(t)
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tually determined by CΩ

i (t)  and CΦ

i (t) , hence, 
k is indirectly determined by these two values. 
Thus we have the following relations,

1) k↑: caused by more allocation and less 
release, that implies CΩ

i (t) > CΦ

i (t)  in most 
time;

2) k↓: caused by more release and less al-
location, that implies CΩ

i (t) < CΦ

i (t)  in most 
time.

In summary, to prevent any resource from 
being the bottleneck too quickly, the scheduler 
should control CΩ

i (t)  and CΦ

i (t)  according to 
k, that ensures the availability of the system 
resources.

3.3 Evaluations of DEFF Model

In this section, we evaluate the effectiveness 
of DEFF model. Firstly, to prove the effective-
ness of using DEFF on fairness evaluation, we 
adopt DRF and Max-min algorithms as ex-
amples in our experiments. Then, we adopt a 
utility based algorithm, α-fairness, to show the 
effectiveness of evaluating fairness variation 
by using DEFF when adjusting α factor (since 
proportional fairness is also a utility based 
algorithm similar with α-fairness, we take 
α-fairness as an example).

In our first experiment, we use DEFF to 
show the difference on fairness between 
DRF and Max-min allocation algorithms. Let 

β∈(0,20), λ =
1 − β
β

, pω=0.6, pϕ=0.7, the re-

implies that the system releases all resourc-
es allocated in the previous time t’, thus, we 
have Oi(t)≥0. Similarly, the amount of spare 
resource i at t, Ui(t), is also composed of three 
parts: 1) the free resources in the previous 
time, Ui(t'), 2) the new allocation CΩ

i (t) , and 
3) the released amount CΦ

i (t)  at the current 
time. If Ui(t)=0, it implies that the system has 
no spare resource at t, and Oi(t) reaches its 
maximum. Otherwise, if Oi(t)=0, Ui(t) reaches 
the maximal value.

To give a further discussion on the rela-
tion between Oi(t) and Ui(t), the capacity of 
resource i, Ri, is normalized as Ri=1, then, ac-
cording to section 2.3, we have Oi(t)+Ui(t)=1. 
For example, in figure 2, assume Oi(t')=0.3 at 
t’, then Ui(t')=0.7 (shown as point pt'). Thus, 
we can obtain from figure 2 that Oi(t) and Ui(t) 
are determined by L. In other word, an arbi-
trary point on L are a pair of possible Oi(t) and 
Ui(t). We define a family of linear functions f 
as straight lines passing through the origin and 
intersect with L, then, the set of intersections 
is the set of possible values of Oi(t) and Ui(t). 

Let k = f ′ =
Oi(t)
Ui(t)

, we have the following 

relations,
1) k→0: Oi(t)→0, the system resource 

available reaches to the maximum, Umax
i = Ri ;

2) k→∞: Ui(t)→0, the occupied system re-
source reaches to the maximum, Umax

i = Ri ;
3) k=1: Ui(t)=Oi(t), the resource occupancy 

equals to the spare (e.g. point pm in figure 2).
k=1 is a special case, that in this moment, 

f and L intersect at point pm. If Oi(t) and Ui(t) 
are at the lower half of L below pm (0≤k<1), 
the spare resource i is more than the occupied. 
That is, at that moment, the amount of re-
source i can still satisfy the future demand. If 
Oi(t) and Ui(t) are at the upper half of L above 
pm (1≤k<∞), in this case, the occupancy of 
resource i is more than the spare. Moreover, 
with the increase of k, i can be the bottleneck, 
and the system has to adjust the allocation 
algorithm to prevent i from being saturated 
earlier.

As mentioned before, Oi(t) and Ui(t) are ac-
Fig.2  The relation between Oi(t) and Ui(t)
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the surface in blue denotes the fairness value 
with DRF, whereas the dark gray is that of 
using max-min. Obviously, with DEFF mod-
el, ∀p∈S1 and ∀q∈S2, we have p>q. Thus, 
according to [7][9], DRF can achieve better 
fairness values than that of using max-min. 
This further implies that under the variations 
of time and resource demands, DEFF model 
can still preferably provide the measurement 
on allocation fairness.

Figure 4 shows the sample slices of figure 
3 along the axis “running times”, in which 
abscissa is the time variation, whereas the 
ordinate is the fairness value, and the sample 
points β=5,12,21. It can be obtained that the 
curve of using DRF always larger than that of 
using max-min. Hence, with DEFF, we can see 
that DRF has higher fairness than max-min as 
the factorβis determined.

Figure 5 shows three sample slices from 
Figure 3 on theβ-axis. Since the node number 
varies according to pω and pϕ, the total dom-
inant share presents dynamic characteristics. 
With the changes of fairness factor β, DRF can 
always achieve better fairness than max-min 
algorithm. When β is getting larger, the DRF 
curve has moderate changes, whereas the max-
min curve decreases more rapidly. This reveals 
DRF has higher stability than max-min.

In our second experiment, the effective-
ness of DEFF on evaluating the α-fairness is 
presented. α-fairness is actually an adjusting 
algorithm, which attempts to find an equilib-
rium point between efficiency (utilization or 
revenue) and fairness[19], hence, in our ex-
periment, we only show the fairness variation 
when adjusting α (discussing efficiency is be-
yond the scope of this paper).

Let pω=0.6, pϕ=0.7, α∈[0,1], the resource 
capacity R={600}. Initial node number n=10, 
5≤dij≤25, t∈[0,50]. We use Max-min algorithm 
to allocate resource, and adjust the allocation 
results with α-fairness.

Figure 6 shows the fairness variation when 
adjusting α at each running time. Although 
running time t∈[0,50], because when the node 
number changes, at some running time points, 
no node exists (null points). Therefore, in this 

source capacity R={300,400,250}, initial node 
number n=20, 0<dij≤30, t∈[0,50], demand 
vector of i, Di(t),(i=1,2, ..., n), can make a 
n-dimension solution space similar to Figure 
1.

Figure 3 shows t-based DEFF model, in 
which “running times” indicates t variation, 

Fig.3  Evaluation of DEFF Model (using DRF & Max-min)
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DEFF model can effectively evaluate the fair-
ness changes with the time and node number 
variation.

IV. CONCLUSIONS

This paper proposes DEFF, a framework for 
dynamic evaluation of fairness based on dom-
inant share. Aiming to the dynamic resource 
demand and computing node in cloud comput-

figure, we have only 27 running time points 
after removing null points. We can see that 
as α changes from 0 to 1, the fairness value 
decreases at each running time. However, for 
some running times, fairness values decrease 
rapidly, whereas some decrease slowly or even 
have very unobvious changes. We will choose 
some running times as examples to discuss the 
details on fairness variation.

Figure 7 shows two typical examples of the 
fairness variation under different allocation 
vectors with changes of α.

For Figure 7(a), running time t=27, the allo-
cation vector A27={180,200,220}, and the total 

occupied resource is O27 =
∑

A27 = 600 . Ac-

cording to α-fairness, Aα=0
27 = {200, 200, 200}  

α=0 and Aα=1
27 = {180, 200, 220} , α=1. Aα=0

27  is 
totally fair, as each node gets the same amount 
of resource, however, each node cannot be sat-
isfied according to its resource demand (some 
need more, but some need less). Aα=1

27  is less 
fair than Aα=0

27 , however, the nodes’ resource 
demands are fully considered. Hence, with the 
curve generated by DEFF, we can try to find 
an equilibrium point between the fairness and 
nodes’ demands. This is beyond the scope of 
this paper.

Besides, the elements of Aα=1
27  approxi-

mate to that of Aα=0
27 , hence, changing α only 

leads slight decline on fairness (about -3.0 
to -3.04). Hence, the curve seems nearly 
flat. For Figure 7(b), running time t=15, 
the allocation vector A15={82.67, 25.0, 
246.5, 47.67, 98.25}, and the total occu-

p i e d  r e s o u r c e  i s  O15 =
∑

A15 = 500.09 . 

When α=0, we obtain the adjusted vector 
Aα=0

15 = {ai|ai = 100.018, i = 1, 2, 3, 4, 5} , 
whereas the vector becomes the original one 
whenα=1 ( Aα=1

15 = A15 ). Since Aα=0
15  is much 

fairer than Aα=1
15  (without considering nodes’ 

resource demands), the curve decreases obvi-
ously (about -5 to -11).

In summary, our experiment results reveal 
that for the typical resource allocation algo-
rithms and utility-based fairness algorithm, 

Fig.5  Fairness variation as t=10,15,25
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Fig.6  Evaluation of DEFF Model (using α-fairness)
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